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p-Periodic nets can be derived from a voltage graph G with voltages in Zp, the

free abelian group of rank p, if the cyclomatic number � of G is larger than p.

Equivalently, one may describe a net by providing a set of (� � p) cycle vectors

of G forming a basis of the subspace of the cycle space of G with zero net

voltage. Let M be the matrix of this basis expressed in the edge basis of the

1-chain space of G. A net is called totally unimodular whenever every sub-

determinant of M belongs to the set {�1, 0, 1}. Only a finite set of totally

unimodular nets can be derived from some finite graph. It is shown that totally

unimodular nets are stable under the operation of edge-lattice deletion in a

sense that makes them comparable to minimal nets. An algorithm for the

complete determination of totally unimodular nets derived from some finite

graph is presented. As an application, the full list of totally unimodular nets

derived from graphs of cyclomatic numbers 3 and 4, without bridges, is given.

It is shown that many totally unimodular nets frequently occur in crystal

structures.

1. Introduction

Net enumeration is a long-standing problem in crystal-

lography, going back as far as the works of Wells (1977). It is

known that p-periodic nets can be represented by labelled

quotient graphs (Chung et al., 1984) and that, conversely,

p-periodic nets can be derived from graphs with label

assignment in Zp, the free abelian group of rank p. For

3-periodic nets Chung et al. (1984) limited assignments to label

vectors (h; k; l) with indices from the set f�1; 0; 1g. It is

generally true, however, that infinitely many nets can be

generated from a single graph. A noteworthy exception

concerns minimal nets, which are in a one-to-one correspon-

dence with finite graphs (Beukemann & Klee, 1992; Bonneau

et al., 2004). Minimal p-periodic nets owe their name to the

property that deleting any edge lattice breaks the net into an

infinite number of translationally equivalent (p � 1)-periodic

nets. We propose here to derive a special class of p-periodic

nets, called totally unimodular nets, which bear the properties

that (i) deletion of certain edge lattices, chosen in a way to be

made clear later on in this text, yields a p-periodic net

homeomorphic to some minimal net and (ii) deletion of any

number of edge lattices will not give a finite number of

translationally equivalent interpenetrated p-periodic compo-

nents. It results from the definition that only finitely many

totally unimodular nets can be derived from any finite graph.

These two properties of totally unimodular nets make them

second in complexity after minimal nets. We shall also see that

totally unimodular nets are widespread, representing the

topology of a great number of crystal structures, for which we

think they deserve more attention.

In x2 we summarize the essential graph-theoretical back-

ground necessary to an understanding of this work, hopefully

making the paper self-contained enough. Definitions of the

more important concepts are also recalled in the Appendix;

these concepts are given in italic on their first appearance in

the text. The Appendix also explains the nomenclature of

some common graphs used in the paper. The reader will find

the basic concepts of graph theory in Harary (1972) and some

terminology used in solid-state chemistry in Delgado-

Friedrichs & O’Keeffe (2005). Voltage graph theory was

developed in Gross & Tucker (2001). A method of generating

new nets by adding edge lattices directly to the quotient graph

of minimal nets was discussed by Eon (2006). The results in

this paper are based on similar ideas but exploit the obser-

vation that every periodic net can be described as the regular

projection of some minimal net (Eon, 2007, 2011). This leads

to the formal definition, in x3, of totally unimodular nets. The

remainder of x3 and x4 are devoted to the analysis of the

topological stability of these nets under the operation of edge-

lattice deletion. Rutile is studied in x5 as an example of a net of

genus 7 that is not totally unimodular. We describe in x6 an

algorithm and software enabling one to find all totally uni-

modular nets derived from a given finite graph. The program

was applied to get the complete list of 2- and 3-periodic totally

unimodular nets derived from finite graphs with cyclomatic
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numbers 3 and 4 without bridges; the results are discussed in

the last section (x7).

2. Nets as projections

Following Klee (2004), we consider that a net is a simple

3-connected graph, which is locally finite (i.e. any vertex has a

finite number of neighbours; note that this condition was not

explicit in Klee’s paper). A p-periodic net ðN;TÞ is given by a

net N and a subgroup T of the automorphism group of N,

denoted Aut(N), such that T is isomorphic to Zp, the free

abelian group of rank p, and the quotient graph G ¼ N=T is

finite (see also Delgado-Friedrichs, 2005). Note that we do not

impose that T is maximal; this will enable us to consider that

two periodic nets ðN; SÞ and ðN;TÞ based on the same net N

are distinct if the automorphism subgroups S and T are

different. In order to simplify notations, we will speak of the

periodic net N without direct reference to the translation

group T whenever this is maximal in Aut(N). It results from

these definitions that T, the translation group of ðN;TÞ, acts

freely on N. Hence, the natural projection qT mapping every

vertex or edge of N on its orbit by T is a covering projection

[i.e. it is direction-preserving and it maps the set of edges

originating (respectively, terminating) at any vertex v one-to-

one onto the set of edges originating (respectively, termi-

nating) at qTðvÞ]. It is then possible to assign voltages in T to

the edges of G such that the derived graph is isomorphic to N.

The corresponding voltage graph is called a labelled quotient

graph of the net.

Let � be the cyclomatic number of a graph G, that is, the

dimension of its cycle space C. The minimal net M derived

from G is a �-periodic net. The set of the cycle vectors of G

with zero net voltage forms a subspace, say K, of the cycle

space. Since every cycle vector of C is associated with a

translation of the minimal net, K determines a translation

subgroup of M. We may then define the quotient M=K, which

is clearly isomorphic to the net N. We can sum up the previous

results in the following diagram:

M! N ¼ M=K! G ¼ N=T;

where the left-hand arrow is the regular projection, say qK, of

the minimal net M to the periodic net N, and the right-hand

arrow is the projection qT of the net to its quotient graph. The

periodic net N appears then as a partial projection, between

the minimal net and its quotient graph. The subspace K will be

called the kernel of the projection. It is fully equivalent to

define a p-periodic net by a voltage graph or by providing a

basis of the kernel of the projection in the cycle space. It is the

latter method we preferentially use in this paper; since each

cycle vector in the basis of the kernel defines a translation as

an element of a translation subgroup, we call it a relator of the

net. A relator may be associated with a closed walk with zero

net voltage. Relators will be expressed in the edge basis (i.e.

the set of all oriented edges) of the quotient graph.

3. Totally unimodular nets

Let now G be a finite graph of cyclomatic number �. We turn

to the generation of p-periodic nets admitting G as their

quotient graph. As stated in the previous section, we just need

to define the set of relators of the periodic net, which can be

written in a matrix form. Hence, we introduce the relator

matrix R whose entry Ri;j is the coefficient of edge j in the

relator i. It results from the definition that the relator matrix

has n rows with n ¼ � � p.

Definition 3.1. Let ðN;TÞ be a periodic net defined by a graph

G with m edges and an n�m relator matrix R. ðN;TÞ is a

totally unimodular net if every n� n submatrix of R has

determinant 0 or �1.

Matrices with this property are known as totally unimodular

matrices, so we could re-phrase our definition by saying that a

periodic net is totally unimodular whenever its relator matrix

is totally unimodular.

Consider, for example, the 2-periodic net fes, also named

ð4:82Þ, and its labelled quotient graph shown in Fig. 1. Here-

after, the RCSR (Reticular Chemistry Structure Resource)

three-letter symbols (if available) are used to designate net

topologies (O’Keeffe et al., 2008). The quotient graph K4 of

fes has six edges ei ði ¼ 1; . . . 6Þ, which may be oriented and

ordered following the lexicographic order. Thus, e1 ¼ AB is

oriented from A to B etc. Since K4 has cyclomatic number

� ¼ 6� 4þ 1 ¼ 3, a single relator (n ¼ 3� 2) is needed to

define the kernel of the projection from srs, the minimal

net derived from K4, to the 2-periodic net fes. This relator

corresponds to the cycle ðABCDÞ and is associated with the

cycle vector e1 þ e4 þ e6 � e3 with zero net voltage. Opposite

orientation of the cycle ðDCBAÞ is an equivalent choice. The

relator matrix reads

R ¼ 1 0 �1 1 0 1ð Þ;

which shows that fes is a totally unimodular net.

We observe that deleting the edge AB from the labelled

quotient graph K4 yields a graph homeomorphic to K
ð3Þ
2 with

two independent voltages 10 and 01. The derived net, which

can be obtained directly from fes by deleting the whole edge

lattice AB, is thus homeomorphic to the hexagonal net hcb, the

minimal net derived fromK
ð3Þ
2 . On the other hand, deleting the

edge AC from K4 also yields a graph homeomorphic to K
ð3Þ
2

but with the unique voltage 01 in Z2. The derived graph, which
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Figure 1
The net ð4:82Þ (fes) and its labelled quotient graph K4.



can also be obtained directly by deleting the edge lattice AC

from fes, contains infinitely many isomorphic, 1-periodic

components parallel to direction 01. It is easily verified that

deleting edge BD yields a similar result along direction 10. In

the same way, deleting any other edge from the cycle ðABCDÞ

yields a 2-periodic net homeomorphic to hcb. The following

lemma generalizes these observations.

Let G be a graph with cyclomatic number � and pairwise

distinct voltages a; b; . . . taken from a minimum set � of

generators of Z�, assigned to the chords of a spanning tree of

G. Note that any cycle vector of G may be written as a word in

� and, conversely, any word in � defines a unique cycle vector

of G. This allows us, in particular, to define relators as words

in �.

Lemma 3.1. Let G be a graph with cyclomatic number � and

voltages in � as above. Let ðP;TÞ be a periodic net with

translation group T and quotient graph G ¼ P=T, defined

through a set of relators r, such that the edge with voltage a

is not contained in any relator of r. Define a new relator

s ¼ naþ w independent of the set r, where n is a positive

integer and w is an arbitrary word in Z� , not containing a. Let

G n a be the graph obtained after deleting the edge with

voltage a, otherwise with the same voltages as in G assigned to

the remaining edges. The periodic graph Ps n a obtained after

deleting the edge lattice that is the pre-image of the deleted

edge in the derived graph Ps � P=hsi contains exactly n

translationally equivalent components, which are isomorphic

to the periodic graph derived from G n a. If n ¼ 0, the periodic

graph derived from G n a has one dimension less than Ps so

that Ps n a consists of an infinite family of translationally

equivalent periodic graphs.

Proof. Assign a new voltage ’ðxÞðx ¼ a; b; . . .Þ in a free

abelian group to the edge with former voltage x, in such a way

that the set of relators r [ s is a basis of the subspace of the

cycle space of G with zero net voltage. Notice that the derived

periodic net is the quotient Ps ¼ P=hsi. There is no cycle

vector in G n a with net voltage p’ðaÞ for 0< p< n [but there

is one with net voltage n’ðaÞ]: otherwise, there would exist

another relator paþ w0 6¼ s in r. Now, ’ðaÞ is a translation

vector of Ps, and thus of the periodic graph Ps n a obtained

after deleting the referred edge lattice, since the translation

group is conserved after deletion. Hence Ps n a contains n

components isomorphic to the net derived from G n a. In

particular, Ps n a is connected and isomorphic to the net

derived from G n a for n ¼ 1. The two periodic graphs Ps and

Ps n a have the same dimension since the new relator, s, must

be removed as soon as the edge with voltage a is deleted. In

the case n ¼ 0, however, the set of relators is maintained, so

that removal of the edge decreases by one the dimension of

the derived periodic graph.

The proof of Lemma 3.1 implies that Ps n a contains n

disconnected isomorphic periodic nets in the case n> 1. Since

we are interested in crystal nets, it seems quite natural to

speak of n interpenetrated nets where in fact the embeddings

of these nets are interpenetrated. We will keep to this (mis)use

for the sake of clarity. Note that the n components are

translationally equivalent when considered as subgraphs of

the whole periodic net. Consider, for instance, the labelled

quotient graph B4 of the net known as ilc, which is represented

in Fig. 2. Since B4 has cyclomatic number � ¼ 4 and the net is

3-periodic, the kernel is one-dimensional and generated by a

single cycle vector. The sum of the voltages assigned to edges

e1, e2 and e3 is 110 + 101 + 011 = 222, twice the voltage of edge

e4, so that the cycle vector C ¼ e1 þ e2 þ e3 � 2e4 has zero net

voltage. Because of coefficient 1 of edge e1, for instance, C

cannot be a multiple of any shorter cycle vector; hence C (or

�C) is the relator of ilc and the relator matrix is given by the

coordinates of C in the edge basis

R ¼ 1 1 1 �2ð Þ:

Because of the last entry (�2) in R, ilc is not totally uni-

modular. Next, we observe that removal of any edge (loop) in

B4 yields the bouquet B3, which is the quotient graph of pcu,

the primitive cubic net. Direct application of Lemma 3.1 shows

that withdrawal of any edge lattice associated with edges e1,

e2 or e3 with entry 1 in R yields a single primitive cubic net.

Withdrawal of the edge lattice associated with edge e4 with

entry 2 in R yields two interpenetrated primitive cubic nets.

Interpretation of the splitting of the net is straightforward and

follows closely the proof of the lemma. Edge e4 is indeed the

only path in ilc from any vertex to its translated image by 111

whereas the walk e1 þ e2 þ e3 leads to its translated image by

222. It may also be observed that the three voltages 101, 011

and 111 over edges e2, e3 and e4 generate Z3 while voltages

110, 101 and 011 over edges e1, e2 and e3 generate a subgroup

of index 2 in Z3.

We are now in a position to investigate the effect of deleting

more than one edge at a time in a 3-periodic net. Let us first

recall that the support of a cycle vector in a graph G is the set

of edges with non-zero coefficients.
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Figure 2
(Top) The labelled quotient graph B4 of the net ilc, (bottom left) the net
ilc and (bottom right) twofold pcu obtained after deleting edge lattice e4

(green).



Theorem 3.1. Consider a 3-periodic net N defined by a finite

graph G with cyclomatic number � and a set r of ð� � 3Þ

relators associated with a set S of cycle vectors of G. Deletion

of a set E of n � ð� � 3Þ edges from the support of S in G

yields a 3-periodic connected net if, for at least one subset s �

r of n relators, the n� n matrix M, whose entry Mij is the

coefficient associated in relator i 2 s to edge j 2 E, has deter-

minant �1.

Proof. Write an n�m matrix Rn whose rows correspond to

the cycle vectors associated with the n relators of s expressed

in the standard (edge) basis of the edge space. Since det(M) =

�1, the rows of the product matrix M�1:Rn define a set of

relators that is equivalent to the set s. However, the unit

matrix appears in the place formerly occupied by matrix M in

matrix Rn. Hence, each of the ð� � 3Þ � n relators of the

complementary set in r can be modified by adding to it the

linear combination of these n new relators that cancels out the

coefficient of the edges in E. This provides an equivalent set of

relators in which each of the edges of E belongs to a single

relator and has coefficient +1 in the respective cycle vector. As

a consequence E is not a cut set; repeated application of

Lemma 3.1 completes then the proof.

Consider for example, the net pts with labelled quotient

graph G ¼ C
ð2Þ
4 drawn in Fig. 3. We may find two independent

cycle vectors with zero net voltage in G, namely

e1 � e2 � e5 þ e6 and e3 � e4 þ e7 � e8, which form a basis of

the kernel of the projection. The net pts is thus defined by the

graph C
ð2Þ
4 and the relator matrix describing these two cycle

vectors

R ¼
1 1 0 0 1 1 0 0

0 0 1 1 0 0 1 1

� �
:

Any set of two columns in R yields a submatrix with two 0 on

the same row or two 0 on one of the diagonals; hence the

determinant of any 2� 2 submatrix is 0 or �1. pts is thus a

totally unimodular net. Removal of edges e1 and e3 from C
ð2Þ
4

leads to a graph homeomorphic to 3ð32; 4Þ1 (Beukemann &

Klee, 1992) while the respective 2� 2 submatrix in R has

determinant 1. Hence, removal of the corresponding edge

lattices from pts yields a 3-periodic net that is homeomorphic

to the minimal net tfa (see Fig. 4 and Fig. 5). On the other

hand, removal of edges e1 and e7 from C
ð2Þ
4 leads to the graph

4ð3Þ2, and determinant 1 for the associated submatrix, so that

removal of the corresponding edge lattices from pts yields a

3-periodic net that is isomorphic to the minimal net ths. It may

be checked that only tfa and ths may arise (eight times each)

from deletion of two edge lattices associated with determinant

�1.

It is interesting to look also at the 3-periodic net that

describes the topology of �-cristobalite, with labelled quotient

graph drawn in Fig. 6 that is based on the same C
ð2Þ
4 graph. The

net is isomorphic to dia, the diamond net, but �-cristobalite

realizes a periodic embedding of dia defined by a translation

subgroup of index 2 of the full translation group of the net. We
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Figure 3
The labelled quotient graph C

ð2Þ
4 of pts.

Figure 4
Labelled quotient graph of pts after deletion of edges (top) e1 and e3

yielding a net homeomorphic to tfa and (bottom) e1 and e7 yielding ths.

Figure 5
A representation of (top and bottom left) the net pts, (top right) a net
homeomorphic to tfa obtained after deleting edges e1 and e3 and (bottom
right) a net homeomorphic to ths after deleting edges e1 and e7. Deleted
edges in pts are shown in green.



will speak of the cristobalite net to emphasize that every edge

lattice of dia is split into two edge lattices in �-cristobalite. It

may be checked that the voltage assignment in the labelled

quotient graph drawn in Fig. 6 is equivalent to the description

of the cristobalite net through the relator matrix

R ¼
1 0 1 0 1 0 1 0

0 1 0 1 0 1 0 1

� �
:

Again, R is totally unimodular and removal from the cristo-

balite net of the two edge lattices that project on edges e1 and

e2 of its quotient graph yields a 3-periodic net homeomorphic

to the minimal net tfa. In this case, tfa is the only minimal net

contained in the initial net and is produced by the removal

of any one of the 16 possible pairs of edges associated with

submatrices of determinant �1. We are thus naturally drawn

to the conclusion that the cristobalite net is totally uni-

modular. As a net, however, cristobalite is isomorphic to dia,

a minimal net. It should be emphasized that there is no

contradiction: dia is a 3-periodic, � ¼ 3 minimal net while

cristobalite is a � ¼ 5, 3-periodic net. Withdrawing an edge

lattice in dia amounts to withdrawing two correlated edge

lattices in cristobalite that disconnect the net. The phenom-

enon is quite general: 3-periodic minimal nets can always be

generated as 3-periodic nets of higher genus but with lower

translational symmetry.

Theorem 3.1 admits a partial converse.

Theorem 3.2. Let N be a p-periodic net defined by a graph G

and a set r of n relators projecting on a set S of cycle vectors

of G, and suppose that one can find n edge lattices whose

removal leaves a connected graph with the same periodicity as

N and such that its quotient graph is a spanning subgraph of G.

Then, the n� n matrix M associated with the coefficients of

the respective edges in the set S has determinant � 1.

Proof. Assign voltages in Zp to the edges of G in order to

satisfy the set of relators r. Call P the periodic graph left after

deleting the n referred edge lattices of N, and G	 its quotient

graph. Because P is connected, G	 also is connected and so the

cyclomatic numbers of G and G	 verify �ðG	Þ ¼ �ðGÞ � n. Let

b be the set of relators that define P, then jbj ¼ jrj � n ¼ 0, so

that b ¼ ; and P is homeomorphic to some minimal net. Since

P is connected and has the same periodicity as N, there is a set

B of cycle vectors of G	 with net voltages 10 . . . 0, 010 . . . 0, . . .,
00 . . . 1 in Zp. Inserting back any removed edge ei in G	 is

possible since G	 spans G, and increases its cyclomatic number

by one unit. One can thus find an independent cycle in G	 þ ei

containing the edge ei and add the right combination of cycle

vectors of the set B to get a cycle vector of zero net voltage

in G; this defines a new relator si of N containing the edge ei.

The n� n matrix of the coefficients of these edges in the

new relator set s is clearly the unit matrix. But r and s are

equivalent sets of relators; hence the change-of-basis matrix

between both sets, which is exactly the matrix M, has deter-

minant �1.

4. Characterization of totally unimodular nets

In this section, we want to come to a full characterization of

totally unimodular nets by analysing the effect of deleting

specific edge-lattice sets. We consider a p-periodic net N

defined by a graph G with m edges and an n�m relator

matrix R. Then, we choose a set S of n edges in G; call G n S

the graph obtained from G after deleting this edge set. We will

examine the properties of the periodic graph obtained after

removing the n associated edge lattices as a function of the

determinant D of the respective n� n submatrix RS of R.

The result expressed in Theorem 3.1 may be extended easily

to nets of an arbitrary periodicity; hence a connected

p-periodic graph is obtained if D ¼ �1. Since this graph is

p-periodic, has no relator and its quotient graph is connected,

this quotient G n S must have cyclomatic number p. Hence,

notwithstanding possible dangling edges, the periodic graph is

homeomorphic to some p-periodic minimal net.

Suppose now that jDj> 1 and choose a largest k� k

submatrix M of RS with determinant �1. If such a submatrix

exists, we change the order of edges and relators so that it is

now located on the upper left of RS ; then we left multiply R by

the n� n matrix obtained from the unit matrix In after inser-

tion of M�1 on its upper left side. Applying the same procedure

as in the proof of Theorem 3.1, we get an equivalent relator

matrix where the upper-left k� k submatrix is the unit matrix

Ik and only zero entries appear below this matrix. The lower-

right ðn� kÞ � ðn� kÞ submatrix Rn�k of RS has then deter-

minant �D and no entry equal to �1 (otherwise M would not

be the largest submatrix of determinant �1). Let d be the

greatest common divisor of the entries of the left column in

Rn�k. We may apply Euclid’s algorithm (Heath, 1956) to the

ðn� kÞ lower rows of R to get an equivalent relator matrix

where only one non-zero entry remains in the left column

of Rn�k; clearly this entry is d and can be brought to the

first row of Rn�k by re-ordering of the relators. The

same procedure may be applied again to the lower-right

ðn� k� 1Þ � ðn� k� 1Þ matrix until we get an equivalent

upper triangular matrix TS with non-zero values along the

diagonal. Since every edge of S belongs to an independent

relator, S is not a cut set. In accordance with Theorem 3.1,

deleting the edge lattices that are the pre-images of the first k

edges still yields a connected p-periodic graph. In accordance

with Lemma 3.1, removal of the next edge lattice splits the

graph into d translationally equivalent, interpenetrated

p-periodic connected graphs. Repeated application of the

lemma to the remaining edges of S shows that, after removal

of all the corresponding edge lattices, the net is finally split
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Figure 6
The labelled quotient graph C

ð2Þ
4 of �-cristobalite.



into jDj translationally equivalent, interpenetrated p-periodic

connected graphs. Excepting the possible existence of

dangling edges, as in the first case, every periodic component is

homeomorphic to some p-periodic minimal net.

Consider finally the case D ¼ 0. Applying again Euclid’s

algorithm, and re-ordering rows when necessary, we get an

upper triangular matrix that is equivalent to RS. This time,

however, some diagonal entries should be zero. As it is always

possible to exchange edges (columns) during the algorithm,

we may suppose that all zero entries are located on the lower

part of the diagonal. Let then ek be the first edge with zero

entry and � be the product of non-zero entries in the diag-

onal. Deletion of edge lattices that are the pre-images of edges

ei with i< k yields, as above, a set of j�j translationally

equivalent (interpenetrated) p-periodic connected graphs.

Now, edge ek does not belong to any relator of the resulting

periodic graph. Hence its removal will not decrease the

number of relators. If ek is not a bridge, Lemma 3.1 shows that

the resulting periodic graph consists of an infinite family of

translationally equivalent ðp� 1Þ-periodic graphs. If ek is a

bridge, each periodic component is split into two translation-

ally non-equivalent periodic graphs. Eventually, deleting a cut

set S of G will split the net into a number of translationally

non-equivalent periodic components of possibly different

periodicities. The splitting of the net depends on both the rank

of matrix RS and the relationship between the cut set and the

support of the relators. Owing to the large number of non-

equivalent possibilities, we think it better to analyse a concrete

example in the next paragraph. Before this, however, we may

summarize the results of this section into the following.

Corollary 4.1. A p-periodic net is totally unimodular if and

only if it cannot be split into a finite number of translationally

equivalent interpenetrated p-periodic components.

Proof. Consider the whole set of n� n submatrices of the

n�m relator matrix. The previous analysis showed that a net

can only split into a finite number of translationally equivalent

interpenetrated nets when some of these submatrices have

determinant D with jDj> 1.

Notice that minimal nets form a subclass among totally

unimodular nets. In fact we may consider that the relator

matrix of minimal nets is identically null so that withdrawal of

any edge lattice disconnects a p-periodic minimal net into an

infinite family of translationally equivalent ðp� 1Þ-periodic

graphs.

5. The rutile net

The rutile net (rtl) provides an interesting example of the

different cases considered in the previous section. The labelled

quotient graph G is shown in Fig. 7 with all edges ei oriented

up–down. The reported voltages lead to the following relator

matrix:

R ¼

0 0 1 1 1 1 0 0 0 0 0 0

0 0 0 0 1 1 1 1 0 0 0 0

0 0 0 0 1 1 0 0 1 1 0 0

1 1 0 1 1 0 0 1 0 1 1 1

0
BB@

1
CCA:

The submatrix associated with the edge set S1 ¼ fe3; e5; e7; e9g

has determinant 1. Since the graph G n S1 is homeomorphic to

K
ð4Þ
2 , the 3-periodic graph obtained after deleting the respec-

tive edge lattices in rtl is homeomorphic to dia.

Although removal of the set S2 ¼ fe3; e6; e8; e10g from G

also leaves a graph homeomorphic to K
ð4Þ
2 , the determinant of

the submatrix RS is 2, so that the net is split into two inter-

penetrated components homeomorphic to dia (see Fig. 7).

This shows that rtl is not totally unimodular.

The submatrix associated with the cut set S3 ¼

fe1; e2; e11; e12g of G has determinant 0. The graph G n S3 has

two components homeomorphic to B2 and the periodic graph

obtained after deleting the respective edge lattices in rtl still

has three relators since the four edges of S3 are only involved

in one relator (the rank of RS is 1). The graph consists of two

infinite families of 1-periodic graphs. In each family, the

1-periodic graphs are all translationally equivalent. They

correspond to ribbons of rhombi and may be correlated to

edge-linked octahedral chains usually considered to describe

rutile topology in crystal chemistry.

As a last example, the submatrix associated with the edge

set S4 ¼ fe3; e4; e5; e6g also has determinant 0, but rank 3.

Hence, there is still one relator after deleting the four edges.

Since G n S4 is connected, the periodic graph obtained after

deleting the respective edge lattices in rtl contains an infinite

family of 2-periodic graphs, all translationally equivalent in
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Figure 7
(Top) Labelled quotient graph of rtl, (bottom left) representation of rtl
and (bottom right) twofold dia obtained after deleting the edge set
S2 ¼ fe3; e6; e8; e10g enhanced in green in rtl.



one direction. Notwithstanding dangling edges, the quotient

G n S4 is homeomorphic to 3ð32; 4Þ1 and each 2-periodic

component of the infinite graph is homeomorphic to the plane

net ð4:6:4:6Þð4:62Þ2.

6. Generating totally unimodular nets

We used the theory described above to create a computer

program UniNet for generating all possible totally unimodular

nets from a given quotient graph G. The algorithm of the

program includes the following steps:

(i) Reading the adjacency matrix of G.

(ii) Determining the spanning tree and all (�) chords of G.

(iii) Determining the basis of the cycle space C for G.

(iv) Assigning voltages from Z� to the chords and, as a

result, obtaining a labelled quotient graph of a �-periodic

minimal net M and a set of basis cycle vectors corresponding

to C.

(v) Enumerating all closed trails by summing the basis cycle

vectors, searching for all acceptable cycle vectors with zero net

voltage (relators) and forming all subspaces K of C.

(vi) Searching for all projections M=K, where K runs over

all projection kernels with totally unimodular relator matrices

and, as a result, obtaining all totally unimodular nets

N ¼ M=K.

We applied this procedure to generate all (� � 1)-periodic

totally unimodular nets from �-periodic minimal nets for

� ¼ 3 and 4 (i.e. for the minimal nets enumerated by Beuke-

mann & Klee, 1992). There are 111 quotient graphs with � ¼ 4

from which we excluded 68 that have at least one bridge

because they give only nets with vertex collision which

are very rare in crystal chemistry (Delgado-Friedrichs &

O’Keeffe, 2005). Analogously we excluded seven graphs from

the 15 quotient graphs with � ¼ 3. As a result, we found 14

2-periodic and 210 3-periodic totally unimodular nets. The

corresponding crystallographic data are available as supple-

mentary material.1

The embeddings of the nets were generated using the

program Systre (Delgado-Friedrichs & O’Keeffe, 2003; http://

www.gavrog.org) and were topologically identified with both

Systre and TOPOS (Blatov, 2006; http://www.topos.ssu.

samara.ru). At this step, only non-isomorphic nets were

selected and characterized by a number of their topological

indices to be used for classification (Blatov, 2007). The indices

were included in the TOPOS TTD collection (Blatov &

Proserpio, 2009) that allows us to reveal the totally uni-

modular nets in the crystal structures of newly synthesized

compounds. To find how the 3-periodic totally unimodular

nets occur in known crystal structures we searched through

the TOPOS TTO collection that currently contains more than

13 000 examples of 3-periodic (single or interpenetrated)

underlying nets realized in inorganic compounds, coordination

networks and organic hydrogen-bonded supramolecular

architectures [see Alexandrov et al. (2011) and Blatov &

Proserpio (2011) for details on the possible different repre-

sentations called ‘standard’ or ‘cluster’ stored in TOPOS

databases]. To estimate the occurrence of 2-periodic totally

unimodular nets we explored underlying nets in 10 458 two-

dimensional coordination polymers, the crystallographic data

of which were taken from the Cambridge Structural Database

(release 5.32; Allen, 2002).

7. Occurrence of totally unimodular nets

We found examples of the occurrence of ten out of 14

2-periodic totally unimodular nets in coordination polymers

(Table 1). Among them are two minimal 2-periodic nets, sql

and hcb, that emerge as totally unimodular nets of a lower

translational symmetry as was shown above for the cristobalite

and diamond nets. Some of these 2-periodic nets which are less

known, or have been newly found, are shown in Fig. 8. It is

noteworthy that the first four most abundant 2-periodic nets

are totally unimodular, and all ten nets are topologically

rather simple (uninodal or binodal). Furthermore, three

2-periodic nets (KIb, 4L1 and 4,4L27) have good embeddings

(with no edge crossings) only in three-dimensional space as

shown in the figure.

Of the 210 3-periodic totally unimodular nets, 55 are

described in the databases on periodic nets (Blatov, 2007;

O’Keeffe et al., 2008; Ramsden et al., 2009; Blatov &

Proserpio, 2011) and 40 are realized as underlying nets (Table

2), ten of which were not known before this study (named

#;# . . . T# according to Alexandrov et al., 2011). Moreover,

three out of the four nets at the top of the table (bcu, bnn,

nbo) occupy also a top place among the first 20 most frequent

underlying nets recently reported (Alexandrov et al., 2011).

Closer inspection of the latter list shows that out of the ten first

most abundant nets (pcu, dia, bcu, pts, rtl, cds, srs, sra, bnn,
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Table 1
Occurrence of totally unimodular nets among 2-periodic nets [see Blatov
et al. (2009) for the definition of point and vertex symbols].

Name Point symbol Vertex symbol Occurrence

sql 44 [4.4.4.4] 4019
hcb 63 [6.6.6] 1935
fes 4:82 [4.8.8] 611
3,4L13 ð4:62Þ2ð4

2:62Þ [4.6.6]2[4.6.4.6] 294
hxl 36 [3.3.3.3.3.3] 121
3,5L52 ð3:52Þð32:53Þ [3.5.5][3.5.3.5.5] 44
KIb ð4:102Þ [4.102.106] 16
3,4L21 ð3:72Þ2ð3:7

3Þ [3.7.7]2[3.7.7.7] 16
4L1 ð42:63:8Þ [4.4.62.62.64.*] 14
hnb ð3:92Þ3ð9

3Þ [3.9.9]3[9.9.9] 6
cem-d ð53Þ2ð5

4Þ [5.5.5]2[5.5.5.5] 3
4,4L27 ð3:64:8Þð32:6:72:8Þ [3.*.6.6.6.6][3.3.62.*.*.*] 3

1 Supplementary material includes drawings of all the 15 and 111 quotient
graphs with � = 3 and 4 (genus3.jpg and genus4.jpg), and the coordinates for
the embedding of the nine 2-periodic totally unimodular nets not listed in the
RCSR (2periodic_9nets.cgd). For the 3-periodic nets we give the coordinates
for the 65 (known or observed) nets and separately for the 145 new and
not yet observed nets (145new_TotUnMod.cgd, 65known_TotUnMod.cgd).
The coordinates are text files in Systre .cgd format that include the edges, and
together with each name we also give the corresponding quotient graph name
as given by Beukemann & Klee (1992). For the 145 new nets we also assign
a name according to TOPOS TTO/TTD rules as reported in the file
all_new145.xls. The material is available from the IUCr electronic archives
(Reference: WX5007). Services for accessing these data are described at the
back of the journal.



nbo), nine are totally unimodular with � = 3 to 5 (including the

minimal nets pcu, dia, srs, cds with � ¼ 3); the only exception

is rtl. As an example Fig. 9 shows a representation of three

nets listed in Table 2 that are not in the RCSR database. The

remaining 145 3-periodic totally unimodular nets that have not

yet been observed in any crystal structure have new topologies

not described before. Interestingly three of them are non-

crystallographic nets (Moreira de Oliveira & Eon, 2011) for

which a maximum symmetry embedding cannot be computed

with Systre. For the remaining 142 nets the number of non-

equivalent nodes varies from 1 to 5; there are one uninodal, 20

binodal, 76 trinodal, 34 tetranodal and 11 pentanodal nets.

Since the proportion of 3-periodic totally unimodular

underlying nets is rather large (40 versus 210; 19.0%) in

comparison to the probability of occurrence of a randomly

generated net (1–2%) (Blatov & Proserpio, 2009), the prop-

erty of unimodularity can be considered as crystallochemically

important. At the same time, it does not predetermine a high

occurrence of the net. Obviously, other properties should be

taken into account, in particular, high net symmetry (Ockwig

et al., 2005). Thus, most of the observed totally unimodular

nets are uninodal or binodal (33 out of the 40 3-periodic and

all 12 2-periodic) (see Tables 1 and 2), while the 145 new

3-periodic nets are mainly trinodal or tetranodal.

8. Concluding remarks

Totally unimodular nets were introduced as a class of periodic

nets defined from a finite graph and a totally unimodular

relator matrix. They generalize the concept of minimal nets for

which the relator matrix may be considered to be identically

null, a very special case of unimodularity.

Corollary 4.1 determines the physical meaning of total

unimodularity for periodic nets: they cannot be split into an

interpenetrating array of the same periodicity like minimal

nets cannot be transformed into low-coordinated nets of the

same periodicity. Thus, minimal and totally unimodular nets

can be considered as ‘simple’ nets in the sense that they do

not contain, respectively, one or several subnets of the same

periodicity.

Upon further generalization of the concept, more ‘complex’

nets could be classified according to the spectrum of absolute

values for n� n determinants in their n�m relator matrix.

Indeed, the analysis of rtl suggests that periodic nets asso-

ciated with many common crystal structures are not totally
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Table 2
Occurrence of totally unimodular nets among 3-periodic nets.

Name Occurrence Name Occurrence

bcu 285 nor-3,4-C2/m 3
hex 164 3,4,4-c sqc69 3
bnn 151 fsg 2
nbo 97 4,6T19 2
mog 81 3,6T1 2
sqp 64 cdz 1
fsc 62 ftb 1
qtz 55 fsf 1
qzd 50 tcj-4,6-Cmcm 1
etb 17 fsg-3,4-Cmmm 1
fsc-3,4-Imm2 12 thj-3,4-C222 1
pcu-h 11 3,3,4-c sqc164 1
bbe-3,4-Cmmm 10 3,4T24 1
tfo 10 3,6T44 1
mot 9 4,4T26 1
bto 7 3,3,3T5 1
3,6-c sqc27 7 3,3,3T9 1
eta 5 3,3,4T28 1
moc 4 3,3,4T31 1
sit 3 3,3,3,3,4T1 1

Figure 9
Three 3-periodic nets listed in Table 2 that are not in the RCSR. The
quotient graph related to each of them is added to the right, at the bottom
of the net.

Figure 8
Eight less-known or newly found 2-periodic nets listed in Table 1. Klb was
described in Fig. 28b in Koch & Fischer (1978).



unimodular. Our occurrence analysis showed that more than

80% of 3-periodic nets are not totally unimodular. It is also

highly probable that the occurrence of totally unimodular nets

decreases with increasing cyclomatic numbers. Hence, a less

demanding property is needed to better characterize impor-

tant nets for crystal chemistry. We propose to call unimodular

a net such that the smallest positive absolute value for n� n

determinants in the relator matrix, if it exists, is jDj ¼ 1.

According to this definition, totally unimodular nets

(including minimal nets) are also unimodular nets. The present

study shows that, for unimodular nets, there exists a set of n

edge lattices whose deletion yields a connected graph of the

same periodicity which is homeomorphic to some minimal net.

Finally, we note that crystallochemical analysis of the

topology of crystal structures often corresponds to a decom-

position into structural 1- or 2-periodic subunits such as simple

or multiple chains, or two-dimensional layers. This can be

done more routinely by considering null n� n determinants in

the n�m relator matrix of the associated 3-periodic net.

APPENDIX A
Terminology

Bouquet Bn: graph with a single vertex and n loops.

C
ðnÞ
m : graph of the cycle with m vertices and multiple (n-folded)

edges.

Cut set: a set of edges whose deletion yields a disconnected

graph.

Cycle space: the vector space built upon the set of cycle

vectors.

Cycle vector: any linear combination of cycles.

Cyclomatic number: the number of independent cycles of a

graph, � = number of edges � number of vertices + 1.

Edge lattice: the set of edges in a periodic net ðN;TÞ that are

equivalent under the translation group T.

Genus: the genus of a periodic net ðN;TÞ is the cyclomatic

number of its quotient graph N=T.

Homeomorphism: two graphs are homeomorphic if it is

possible to transform them into isomorphic graphs by a

sequence of edge subdivisions (i.e. deletion of an edge uv and

addition of a vertex w together with two edges uw and wv).

Km: complete graph with m vertices.

K
ðnÞ
m : complete graph with m vertices and multiple (n-folded)

edges.

Net voltage: sum of the voltages along the edges of a walk.

Underlying net: the net whose nodes and edges correspond to

structural units and connections between them. It is the result

of some structure simplification (Blatov & Proserpio, 2011).

Voltage: vector label assigned to an arc (i.e. oriented edge),

indicating the vector difference between the unit cells

containing the terminating and its originating vertices.

Word in �: a linear combination of generators from the set �
with integer coefficients.
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